login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371386
Expansion of (1/x) * Series_Reversion( x * (1-4*x)^2 / (1-x) ).
1
1, 7, 89, 1391, 24209, 450231, 8759337, 176071263, 3627907745, 76217773799, 1626477863801, 35158334302927, 768222871584817, 16940297062253719, 376507441510456905, 8425543117906277055, 189683436162271517505, 4293057440192560395207
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 3^k * binomial(2*n+k+1,k) * binomial(2*n,n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-4*x)^2/(1-x))/x)
(PARI) a(n) = sum(k=0, n, 3^k*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);
CROSSREFS
Cf. A371364.
Sequence in context: A069661 A069662 A359646 * A295543 A062747 A099719
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 20 2024
STATUS
approved