login
A371186
Indices of the cubes in the sequence of cubefull numbers.
4
1, 2, 4, 6, 8, 10, 13, 15, 18, 20, 23, 24, 29, 32, 34, 38, 39, 43, 45, 48, 50, 54, 57, 58, 61, 67, 69, 73, 75, 77, 81, 85, 88, 90, 94, 96, 99, 102, 105, 107, 110, 113, 117, 124, 126, 128, 130, 135, 137, 139, 143, 147, 149, 153, 158, 160, 163, 167, 169, 172, 176
OFFSET
1,2
COMMENTS
Equivalently, the number of cubefull numbers that do not exceed n^3.
The asymptotic density of this sequence is 1 / A362974 = 0.214626074... .
If k is a term of A371187 then a(k) and a(k+1) are consecutive integers, i.e., a(k+1) = a(k) + 1.
FORMULA
A036966(a(n)) = A000578(n) = n^3.
a(n+1) - a(n) = A337736(n) + 1.
a(n) ~ c * n, where c = A362974.
EXAMPLE
The first 4 cubefull numbers are 1, 8, 16, and 27. The 1st, 2nd, and 4th, 1, 8, and 27, are the first 3 cubes. Therefore, the first 3 terms of this sequence are 1, 2, and 4.
MATHEMATICA
cubQ[n_] := n == 1 || AllTrue[FactorInteger[n], Last[#] >= 3 &]; Position[Select[Range[10^6], cubQ], _?(IntegerQ[Surd[#1, 3]] &)] // Flatten
(* or *)
seq[max_] := Module[{cubs = Union[Flatten[Table[i^5*j^4*k^3, {i, 1, Surd[max, 5]}, {j, 1, Surd[max/i^5, 4]}, {k, Surd[max/(i^5*j^4), 3]}]]], s = {}}, Do[If[IntegerQ[Surd[cubs[[k]], 3]], AppendTo[s, k]], {k, 1, Length[cubs]}]; s]; seq[10^6]
PROG
(PARI) iscub(n) = n == 1 || vecmin(factor(n)[, 2]) >= 3;
lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(iscub(k), c++; if(ispower(k, 3), print1(c, ", ")))); }
CROSSREFS
Similar sequences: A361936, A371185.
Sequence in context: A186289 A332687 A345981 * A053044 A129011 A130174
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Mar 14 2024
STATUS
approved