OFFSET
1,2
COMMENTS
LINKS
FORMULA
EXAMPLE
The first 4 cubefull numbers are 1, 8, 16, and 27. The 1st, 2nd, and 4th, 1, 8, and 27, are the first 3 cubes. Therefore, the first 3 terms of this sequence are 1, 2, and 4.
MATHEMATICA
cubQ[n_] := n == 1 || AllTrue[FactorInteger[n], Last[#] >= 3 &]; Position[Select[Range[10^6], cubQ], _?(IntegerQ[Surd[#1, 3]] &)] // Flatten
(* or *)
seq[max_] := Module[{cubs = Union[Flatten[Table[i^5*j^4*k^3, {i, 1, Surd[max, 5]}, {j, 1, Surd[max/i^5, 4]}, {k, Surd[max/(i^5*j^4), 3]}]]], s = {}}, Do[If[IntegerQ[Surd[cubs[[k]], 3]], AppendTo[s, k]], {k, 1, Length[cubs]}]; s]; seq[10^6]
PROG
(PARI) iscub(n) = n == 1 || vecmin(factor(n)[, 2]) >= 3;
lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(iscub(k), c++; if(ispower(k, 3), print1(c, ", ")))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Mar 14 2024
STATUS
approved