login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of the powerful part function (A057521).
6

%I #11 Mar 07 2024 01:26:14

%S 1,2,3,7,8,9,10,18,27,28,29,33,34,35,36,52,53,62,63,67,68,69,70,78,

%T 103,104,131,135,136,137,138,170,171,172,173,209,210,211,212,220,221,

%U 222,223,227,236,237,238,254,303,328,329,333,334,361,362,370,371,372,373

%N Partial sums of the powerful part function (A057521).

%H Amiram Eldar, <a href="/A370902/b370902.txt">Table of n, a(n) for n = 1..10000</a>

%H Maurice-Étienne Cloutier, <a href="http://hdl.handle.net/20.500.11794/28374">Les parties k-puissante et k-libre d’un nombre</a>, Thèse de doctorat, Université Laval (2018); <a href="https://dam-oclc.bac-lac.gc.ca/download?is_thesis=1&amp;oclc_number=1132187972&amp;wbdisable=true&amp;id=74dc2ac7-06b9-464c-9d86-0dc392701385&amp;fileName=33991.pdf">alternative link</a>.

%H Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Cloutier/cloutier2.html">On the powerful and squarefree parts of an integer</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.

%H László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.

%F a(n) = Sum_{k=1..n} A057521(k).

%F a(n) = c_1 * n^(3/2) / 3 + c_2 * n^(4/3) / 4 + O(n^(6/5)), where c_1 = A328013 and c_2 are positive constants (Tóth, 2017).

%F c_2 = zeta(2/3) * Product_{p prime} (1 + 1/p^(4/3) - 2/p^2 - 1/p^(7/3) + 1/p^3) = -2.59305556147555965163... (László Tóth, personal communication). - _Amiram Eldar_, Mar 07 2024

%t f[p_, e_] := If[e == 1, 1, p^e]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]

%o (PARI) pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2]));}

%o lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};

%Y Cf. A057521, A328013, A370903.

%K nonn,easy

%O 1,2

%A _Amiram Eldar_, Mar 05 2024