login
A370798
Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x-x^4)) ).
1
1, 2, 5, 15, 52, 200, 824, 3549, 15745, 71343, 328537, 1532838, 7230341, 34425026, 165230211, 798643501, 3884110353, 18993027790, 93325418867, 460562269745, 2281769792691, 11344607718373, 56585135577335, 283067227288767, 1419859530338142, 7139644680794750
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x-x^4) ).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x-x^4)))/x)
CROSSREFS
Cf. A063021.
Sequence in context: A367415 A369443 A369398 * A007312 A007296 A279558
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 02 2024
STATUS
approved