login
A370797
Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x-x^3)) ).
1
1, 2, 5, 16, 61, 256, 1133, 5191, 24403, 117066, 570835, 2821026, 14097839, 71121660, 361718339, 1852640518, 9547375955, 49469352300, 257564997407, 1346840074300, 7070283106575, 37246786128714, 196849114734855, 1043398553112059, 5545408681615257
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x-x^3) ).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x-x^3)))/x)
CROSSREFS
Cf. A049140.
Sequence in context: A012159 A009736 A349458 * A307228 A104858 A351143
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 02 2024
STATUS
approved