login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370569
Number of permutations of [n] having no adjacent 2-cycles and no adjacent 4-cycles.
3
1, 1, 1, 4, 18, 97, 607, 4358, 35523, 324356, 3280902, 36427352, 440515699, 5764104507, 81147821501, 1223090709078, 19651920713844, 335323035157947, 6055709997021397, 115397482250691724, 2314064310772997407, 48711753977589111112, 1073990818947724506060
OFFSET
0,4
FORMULA
G.f.: Sum_{k>=0} k! * x^k * ( (1-x^2)/(1-x^6) )^(k+1).
a(n) = Sum_{i, j>=0 and 2*i+4*j<=n} (-1)^(i+j) * (n-i-3*j)!/(i!*j!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*((1-x^2)/(1-x^6))^(k+1)))
CROSSREFS
Sequence in context: A334735 A086681 A054139 * A020072 A020027 A263688
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 22 2024
STATUS
approved