OFFSET
1,2
COMMENTS
We have Q_5* = 5^Z X Z_5*, so Q_5*/(Q_5*)^k = (5^Z/5^(kZ)) X (Z_p*/(Z_5*)^k). Note that 5^Z/5^(kZ) is a cyclic group of order k. For the group structure of (Z_5*/(Z_5*)^k), see A370050.
LINKS
Jianing Song, Table of n, a(n) for n = 1..10000
FORMULA
Write n = 5^e * n' with k' not being divisible by 5, then a(n) = n * 5^e * gcd(4,n').
Multiplicative with a(5^e) = 5^(2*e), a(2) = 4, a(2^e) = 2^(e+2) for e >= 2 and a(p^e) = p^e for primes p != 2, 5.
a(n) = n * A370181(n).
From Amiram Eldar, May 20 2024: (Start)
Dirichlet g.f.: ((1 + 1/2^(s-1) + 1/2^(2*s-3)) * (1 - 1/5^(s-1))/(1 - 1/5^(s-2))) * zeta(s-1).
Sum_{k=1..n} a(k) ~ (4*n^2/(5*log(5))) * (log(n) + gamma - 1/2 + 3*log(5/2)/4), where gamma is Euler's constant (A001620). (End)
MATHEMATICA
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
PROG
(PARI) a(n, {p=5}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jianing Song, Apr 30 2024
STATUS
approved