login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370554
a(n) is the denominator of the imaginary part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.
6
1, 2, 3, 3, 12, 24, 252, 56, 18144, 5184, 199584, 33264, 2395008, 48384, 50295168, 100590336, 804722688, 146313216, 137607579648, 6552741888, 11559036690432, 1216740704256, 2924436282679296, 835553223622656, 70186470784303104, 226043384168448, 1895034711176183808
OFFSET
1,2
FORMULA
a(n) = denominator of A231531(n)/n!. - Chai Wah Wu, Feb 22 2024
EXAMPLE
See A370551.
PROG
(PARI) a370554(n) = denominator(imag(prod(k=1, n, 1+I/k)))
(Python)
from math import factorial, gcd
from sympy.functions.combinatorial.numbers import stirling
def A370554(n): return (a:=factorial(n))//gcd(a, sum(stirling(n+1, k<<1, kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1))) # Chai Wah Wu, Feb 22 2024
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Hugo Pfoertner, Feb 22 2024
STATUS
approved