login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370547
a(n) is the numerator of the real part of Product_{k=1..n} (1/k + i) where i is the imaginary unit.
6
1, -1, -5, -5, 19, 73, -331, -2795, 18265, 58643, -141349, -4197973, 1035215, 61269445, -9158903, -1495930487, -34376687, 26949145375, 33594289475, -1013112936505, -4905856636525, 459074207581145, 1713253866399725, -6497000065206625, -51270656805872335, 239235470859971731
OFFSET
1,3
FORMULA
a(n) = numerator of A105750(n)/n!. - Chai Wah Wu, Feb 22 2024
EXAMPLE
n a(n)
/ A370548(n) / A370550(n)
1 1/1 +1/1 *i
2 -1/2 +3/2 *i
3 -5/3 +0/1 *i
4 -5/12 -5/3 *i
5 19/12 -3/4 *i
6 73/72 +35/24 *i
7 -331/252 +11/9 *i
8 -2795/2016 -65/56 *i
9 18265/18144 -3055/2016 *i
10 58643/36288 +4433/5184 *i
PROG
(PARI) a370547(n) = numerator(real(prod(k=1, n, 1/k+I)))
(Python)
from math import factorial, gcd
from sympy.functions.combinatorial.numbers import stirling
def A370547(n): return (a:=sum(stirling(n+1, n+1-(k<<1), kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1)))//gcd(a, factorial(n)) # Chai Wah Wu, Feb 22 2024
CROSSREFS
KEYWORD
frac,sign,easy
AUTHOR
Hugo Pfoertner, Feb 22 2024
STATUS
approved