Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 19 2024 13:52:48
%S 1,42,90,162,234,474,270,378,558,594,774,846,970,810,1050,630,1370,
%T 1134,990,1170,1470,1730,1530,2054,1970,1386,1638,1710,2178,2070,2630,
%U 2250,1890,2730,2394,2310,3234,3230,3530,2790,2898,3650,3470,4010,3570,3654,2970,3150
%N The smallest number k that can be partitioned in n ways as the sum of two Blum numbers (A016105).
%H Michael S. Branicky, <a href="/A370521/b370521.txt">Table of n, a(n) for n = 0..11549</a>
%e 1 cannot be written as the sum of two Blum numbers, so a(0) = 1.
%e Since A016105(k) >= 21, for k >= 1, the numbers 2 through 41 cannot be written as the sum of two Blum numbers. 42 = 21 + 21 = A016105(1) + A016105(1), so a(1) = 42.
%e 90 = 21 + 69 = A016105(1) + A016105(4), 90 = 33 + 57 = A016105(2) + A016105(3), and the numbers 1 to 89 cannot be written in two ways as the sum of two Blum numbers. Thus a(2) = 90.
%o (Magma) pp:=PrimeDivisors; blum:=func<n|#Divisors(n) eq 4 and #pp(n) eq 2 and pp(n)[1] mod 4 eq 3 and pp(n)[2] mod 4 eq 3>;b:=[n: n in [1..5000]|blum(n)]; a:=[]; for n in [0..47] do k:=1; while #RestrictedPartitions(k,2,Set(b)) ne n do k:=k+1; end while; Append(~a,k); end for; a;
%o (Python)
%o from sympy import factorint
%o from itertools import takewhile
%o from collections import Counter
%o def okA016105(n):
%o f = factorint(n)
%o return len(f)==2 and sum(f.values())==2 and all(p%4==3 for p in f)
%o def aupto(N): # N is limit of terms considered; use 2*10**6 for b-file
%o s = [k for k in range(1, N+1) if okA016105(k)]
%o c = Counter(x+y for i, x in enumerate(s) if 2*i<=N for y in s[i:] if x+y<=N)
%o adict = {0: 1}
%o for k in sorted(c):
%o v = c[k]
%o if v not in adict: adict[v] = k
%o adict_rev = (adict.get(i) for i in range(max(adict)+1))
%o return list(takewhile(lambda v:v!=None, adict_rev))
%o print(aupto(4010)) # _Michael S. Branicky_, Feb 28 2024
%Y Cf. A016105.
%K nonn
%O 0,2
%A _Marius A. Burtea_, Feb 27 2024