login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The numerators of a series that converges to the Omega constant (A030178) obtained using Whittaker's root series formula.
1

%I #19 Mar 24 2024 02:25:50

%S 1,1,-1,-5,19,-3,-10187,146847,3268961,-211632497,393324007,

%T 5402916117,-3884618921299,-774402304798329,148294948981707557,

%U -3311395903665985169,-43463254022673425965,14469962812566878696039,6554498075974546253080309,-3074689522272735111427973673

%N The numerators of a series that converges to the Omega constant (A030178) obtained using Whittaker's root series formula.

%C Whittaker's root series formula is applied to 1 - 2x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - ..., which is the Taylor expansion of -x + e^(-x). We obtain the following infinite series that converges to the Omega constant (LambertW(1)): LambertW(1) = 1/2 + 1/14 - 1/259 - 5/9657 + 19/200187 - 3/18671081 ... . The sequence is formed by the numerators of the infinite series.

%H E. T. Whittaker and G. Robinson, <a href="https://archive.org/details/calculusofobserv031400mbp/page/n139/mode/2up">The Calculus of Observations</a>, London: Blackie & Son, Ltd. 1924, pp. 120-123.

%F For n > 1, a(n) is the numerator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n-1)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))), where c(0)=1, c(1)=-2, c(n) = (-1)^n/n!.

%e a(1) is the numerator of -1/-2 = 1/2.

%e a(2) is the numerator of -(1/2)/((-2)*det ToeplitzMatrix((-2,1),(-2,1/2!)) = -(1/2)/((-2)(7/2)) = 1/14.

%e a(3) is the numerator of -det ToeplitzMatrix((1/2!,-2),(1/2!,-1/3!))/(det ToeplitzMatrix((-2,1),(-2,1/2!)*det ToeplitzMatrix((-2,1,0),(-2,1/2!,-1/3!))) = -(-1/12)/((7/2)(-37/6)) = -1/259.

%Y Cf. A030178, A370490 (denominator).

%K sign

%O 1,4

%A _Raul Prisacariu_, Feb 19 2024

%E a(9)-a(20) from _Chai Wah Wu_, Mar 23 2024