login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sum of divisors of n that are squares of squarefree numbers.
2

%I #11 Feb 13 2024 03:39:46

%S 1,1,1,5,1,1,1,5,10,1,1,5,1,1,1,5,1,10,1,5,1,1,1,5,26,1,10,5,1,1,1,5,

%T 1,1,1,50,1,1,1,5,1,1,1,5,10,1,1,5,50,26,1,5,1,10,1,5,1,1,1,5,1,1,10,

%U 5,1,1,1,5,1,1,1,50,1,1,26,5,1,1,1,5,10,1,1

%N The sum of divisors of n that are squares of squarefree numbers.

%C The number of these divisors is A323308(n).

%H Amiram Eldar, <a href="/A370239/b370239.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p) = 1 and a(p^e) = 1 + p^2 for e >= 2.

%F a(n) >= 1, with equality if and only if n is squarefree (A005117).

%F a(n) = A071327(n) + 1 if and only if n is not in A036785.

%F Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(4*s-4).

%F Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 2*zeta(3/2)/Pi^2 = 0.5293779248... .

%t f[p_, e_] := If[e == 1, 1, 1 + p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^2));}

%Y Cf. A005117, A036785, A048250, A062503, A071327, A078434, A323308, A370240.

%K nonn,easy,mult

%O 1,4

%A _Amiram Eldar_, Feb 13 2024