login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370194
Coefficient of x^n in the expansion of ( (1+x) * (1+x^2)^2 )^n.
1
1, 1, 5, 19, 77, 326, 1391, 6028, 26349, 116011, 513730, 2285570, 10208111, 45742724, 205550840, 925918544, 4179740909, 18903381337, 85635147983, 388517336189, 1765019420602, 8028115465732, 36555667019338, 166621503161184, 760161934681647, 3470945792364701
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(n,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x) * (1+x^2)^2) ). See A369440.
MATHEMATICA
a[n_]:=SeriesCoefficient[((1+x)*(1+x^2)^2)^n, {x, 0, n}]; Array[a, 26, 0] (* Stefano Spezia, Apr 30 2024 *)
PROG
(PARI) a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial(u*n, n-s*k));
CROSSREFS
Sequence in context: A228678 A149771 A149772 * A149773 A363548 A149774
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 11 2024
STATUS
approved