login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370192
a(n) is the numerator of the imaginary part of 1/(1+i/2)^n, where i is the imaginary unit.
2
0, -2, -16, -88, -384, -1312, -2816, 3712, 86016, 613888, 3190784, 13248512, 42172416, 72409088, -264175616, -3561586688, -23209181184, -114441715712, -451350102016, -1321966501888, -1548729974784, 14049490239488, 143370521411584, 865974366502912, 4060384503791616, 15163588700274688
OFFSET
0,2
COMMENTS
The corresponding denominators are 5^n.
FORMULA
From Stefano Spezia, Feb 17 2024: (Start)
G.f.: -2*x/(1 - 8*x + 20*x^2).
E.g.f.: -exp(4*x)*sin(2*x). (End)
EXAMPLE
n (5/(1 + i/2))^n
A370191(n) a(n)
0 1 +0 *i
1 4 -2 *i
2 12 -16 *i
3 16 -88 *i
4 -112 -384 *i
5 -1216 -1312 *i
6 -7488 -2816 *i
7 -35584 +3712 *i
8 -134912 +86016 *i
MATHEMATICA
LinearRecurrence[{8, -20}, {0, -2}, 26]
PROG
(PARI) a370192(n) = numerator(imag(1/(1+I/2)^n))
CROSSREFS
Cf. A000351 (denominators), A370191.
Sequence in context: A207655 A071893 A220505 * A069440 A000431 A281982
KEYWORD
sign,frac,easy
AUTHOR
Hugo Pfoertner, Feb 17 2024
STATUS
approved