login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370049
Square array A(n, k), n, k >= 0, read by antidiagonals; for any n and k >= 0 with respective binary expansions Sum_{i > 0} b_i*2^(i-1) and Sum_{i > 0} c_i*2^(i-1), the binary expansion of A(n, k) is Sum_{i > 0} d_i*2^(i-1) with d_i = (Sum_{k divides i} b_k*c_{i/k}) mod 2 for any i > 0.
0
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 8, 3, 0, 0, 4, 10, 10, 4, 0, 0, 5, 32, 9, 32, 5, 0, 0, 6, 34, 36, 36, 34, 6, 0, 0, 7, 40, 39, 256, 39, 40, 7, 0, 0, 8, 42, 46, 260, 260, 46, 42, 8, 0, 0, 9, 128, 45, 288, 257, 288, 45, 128, 9, 0, 0, 10, 130, 136, 292, 294, 294, 292, 136, 130, 10, 0
OFFSET
0,8
COMMENTS
The set of nonnegative integers equipped with A form a commutative monoid.
FORMULA
A(n, k) = A(k, n).
A(m, A(n, k)) = A(A(m, n), k).
A(m XOR n, k) = A(m, k) XOR A(n, k) (where XOR denotes the bitwise XOR operator).
A000120(A(n, 2^k)) = A000120(n).
A(n, 0) = 0.
A(n, 1) = n.
A(n, 2) = A062880(n).
EXAMPLE
Array A(n, k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10
----+-------------------------------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 0
1 | 0 1 2 3 4 5 6 7 8 9 10
2 | 0 2 8 10 32 34 40 42 128 130 136
3 | 0 3 10 9 36 39 46 45 136 139 130
4 | 0 4 32 36 256 260 288 292 2048 2052 2080
5 | 0 5 34 39 260 257 294 291 2056 2061 2090
6 | 0 6 40 46 288 294 264 270 2176 2182 2216
7 | 0 7 42 45 292 291 270 265 2184 2191 2210
8 | 0 8 128 136 2048 2056 2176 2184 32768 32776 32896
9 | 0 9 130 139 2052 2061 2182 2191 32776 32769 32906
10 | 0 10 136 130 2080 2090 2216 2210 32896 32906 32776
PROG
(PARI) bits(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n-=2^b[k]=valuation(n, 2)); return (b); }
A(n, k) = { my (bn = bits(2*n), bk = bits(2*k), v = 0, e); for (i = 1, #bn, for (j = 1, #bk, e = bn[i] * bk[j] - 1; v = bitxor(v, 2^e); ); ); return (v); }
CROSSREFS
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Apr 30 2024
STATUS
approved