login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369896
Positive integers k such that k = a/(b+c) + b/(a+c) + c/(a+b) for some positive integers a, b and c.
1
4, 6, 10, 12, 14, 16, 18, 24, 28, 32, 34, 38, 42, 46, 48, 58, 60, 66, 76, 82, 92, 94, 98, 102, 112, 114, 116, 126, 130, 132, 136, 144, 146, 152, 156, 158, 160, 162, 166, 178, 182, 184, 186, 196, 198, 200, 206, 214, 218, 228, 232, 244, 258, 266, 268, 270, 276, 282, 300, 304, 310, 312, 314
OFFSET
1,1
COMMENTS
Bremner and Macleod showed that a positive integer k is in this sequence if and only if the elliptic curve E/Q : y^2 = x^3 + (4*k^2 + 12*k - 3)*x^2 + 32*(k + 3)*x has a generator on the bounded real component of E(R).
LINKS
Andrew Bremner and Allan Macleod, An Unusual Cubic Representation Problem, Annales Mathematicae et Informaticae, volume 43 (2014), pages 29-41.
EXAMPLE
There are no positive integer solutions to a/(b+c) + b/(a+c) + c/(a+b) = k for k = 1, 2, or 3. The smallest positive integer solution to a/(b+c) + b/(a+c) + c/(a+b) = 4 is (a, b, c) = (4373612677928697257861252602371390152816537558161613618621437993378423467772036, 36875131794129999827197811565225474825492979968971970996283137471637224634055579, 154476802108746166441951315019919837485664325669565431700026634898253202035277999).
PROG
(Magma)
is_A369896 := function(k)
E := EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0]);
return (Min([g[1] : g in Generators(E)]) lt 0);
end function;
[k : k in [4..200] | is_A369896(k)];
(Sage)
def is_A369896(k):
E = EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0])
return ((E.rank() > 0) and (min([g.xy()[0] for g in E.gens()]) < 0))
print([k for k in range(1, 70) if is_A369896(k)])
CROSSREFS
Cf. A283564 (Rank 1).
Sequence in context: A309177 A163164 A137230 * A283564 A348005 A181794
KEYWORD
nonn
AUTHOR
Robin Visser, Feb 04 2024
STATUS
approved