login
A369863
Inert rational primes in the field Q(sqrt(-21)).
0
13, 29, 43, 47, 53, 59, 61, 67, 73, 79, 83, 97, 113, 127, 131, 137, 149, 151, 157, 163, 167, 181, 197, 211, 227, 229, 233, 241, 251, 281, 311, 313, 317, 331, 349, 379, 383, 389, 397, 401, 409, 419, 433, 449, 463, 467, 479, 487, 499, 503, 547, 557, 563, 569, 571, 577, 587
OFFSET
1,1
COMMENTS
Primes p such that Legendre(-21,p) = -1.
MATHEMATICA
Select[Range[3, 600], PrimeQ[#] && JacobiSymbol[-21, #]==-1 &] (* Stefano Spezia, Feb 04 2024 *)
PROG
(SageMath) [p for p in prime_range(3, 600) if legendre_symbol(-21, p) == -1]
CROSSREFS
Cf. inert rational primes in the imaginary quadratic field Q(sqrt(-d)) for the first squarefree positive integers d: A002145 (1), A003628 (2), A003627 (3), A003626 (5), A191059 (6), A003625 (7), A296925 (10), A191060 (11), A105885 (13), A191061 (14), A191062 (15), A296930 (17), A191063 (19), this sequence (21), A191064 (22), A191065 (23).
Sequence in context: A352926 A339989 A120827 * A320631 A339113 A309356
KEYWORD
nonn
AUTHOR
Dimitris Cardaris, Feb 03 2024
STATUS
approved