login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369687
a(n) = Sum_{p|n, p prime} p^phi(n/p).
3
0, 2, 3, 2, 5, 7, 7, 4, 9, 21, 11, 13, 13, 71, 106, 16, 17, 73, 19, 41, 778, 1035, 23, 97, 625, 4109, 729, 113, 29, 362, 31, 256, 59170, 65553, 18026, 145, 37, 262163, 531610, 881, 41, 4874, 43, 1145, 22186, 4194327, 47, 6817, 117649, 1049201, 43047010, 4265, 53, 262873, 9780266, 6497
OFFSET
1,2
MATHEMATICA
Table[DivisorSum[n, #^EulerPhi[n/#] &, PrimeQ[#] &], {n, 60}]
PROG
(Python)
from sympy import totient, primefactors
def A369687(n): return sum(p**totient(n//p) for p in primefactors(n)) # Chai Wah Wu, Jan 28 2024
CROSSREFS
Cf. A000010 (phi), A347104.
Sequence in context: A058977 A337246 A347104 * A085818 A270709 A323382
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jan 28 2024
STATUS
approved