login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=0..n} (3^k + 4^(n-k)).
5

%I #12 Feb 09 2024 04:44:40

%S 2,20,1190,449540,1094267450,17283181758500,1774660248586902950,

%T 1182579046508766038251700,5134581376819479940742838299450,

%U 144547890423248529154421336209389168500,26527720524980501045637796065988864058001683750,31574745853363739268697794406696294745967395732336262500

%N a(n) = Product_{k=0..n} (3^k + 4^(n-k)).

%F a(n) = Product_{k=0..n} (3^k + 4^(n-k)).

%F a(n) = 12^(n*(n+1)/2) * Product_{k=0..n} (1/3^k + 1/4^(n-k)).

%F a(n) = 4^(n*(n+1)/2) * Product_{k=0..n} (1 + 3^n/12^k).

%F a(n) = 3^(n*(n+1)/2) * Product_{k=0..n} (1 + 4^n/12^k).

%F a(n) = 3^(-n*(n+1)/2) * Product_{k=0..n} (3^n + 12^k).

%F a(n) = 4^(-n*(n+1)/2) * Product_{k=0..n} (4^n + 12^k).

%F a(n) = 3^(n*(n+1)/2)*QPochhammer(-4^n, 1/12, n + 1). - _Stefano Spezia_, Feb 07 2024

%F Limit_{n->oo} a(n)^(1/n^2) = 3^(1/(2*(1 + log(4)/log(3)))) * 2 = 2^(1/(1 + log(3)/log(4))) * sqrt(3) = 2.54977004574388327607102436919328599299374003... - _Vaclav Kotesovec_, Feb 07 2024

%F Equivalently, limit_{n->oo} a(n)^(1/n^2) = exp((1/2) * (log(3)^2 + log(3)*log(4) + log(4)^2) / log(12)). - _Paul D. Hanna_, Feb 08 2024

%e a(0) = (1 + 1) = 2;

%e a(1) = (1 + 4)*(3 + 1) = 20;

%e a(2) = (1 + 4^2)*(3 + 4)*(3^2 + 1) = 1190;

%e a(3) = (1 + 4^3)*(3 + 4^2)*(3^2 + 4)*(3^3 + 1) = 449540;

%e a(4) = (1 + 4^4)*(3 + 4^3)*(3^2 + 4^2)*(3^3 + 4)*(3^4 + 1) = 1094267450;

%e a(5) = (1 + 4^5)*(3 + 4^4)*(3^2 + 4^3)*(3^3 + 4^2)*(3^4 + 4)*(3^5 + 1) = 17283181758500;

%e ...

%e RELATED SERIES.

%e Sum_{n>=0} Product_{k=0..n} (1/3^k + 1/4^(n-k)) = 2 + 20/12 + 1190/12^3 + 449540/12^6 + 1094267450/12^10 + 17283181758500/12^15 + ... + a(n)/12^(n*(n+1)/2) + ... = 4.5247082137580440222914164418070212438323...

%o (PARI) {a(n) = prod(k=0, n, 3^k + 4^(n-k))}

%o for(n=0, 15, print1(a(n), ", "))

%Y Cf. A369673, A369674, A369675, A369676, A369677, A369678, A369680.

%K nonn

%O 0,1

%A _Paul D. Hanna_, Feb 07 2024