Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Feb 02 2024 16:10:19
%S 1,2,8,32,256,2560,30720,32768,4194304,20971520,58720256,234881024,
%T 536870912,1342177280
%N Numbers k for which the difference A051903(k) - A328114(k) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, and A328114 is the maximal digit in the primorial base expansion of n.
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%e k factorization max.exp. in primorial max digit diff
%e base
%e 1 0, 1, 1, -1
%e 2 = 2^1, 1, 10, 1, 0
%e 8 = 2^3, 3, 110, 1, 2
%e 32 = 2^5, 5, 1010, 1, 4
%e 256 = 2^8, 8, 11220, 2, 6
%e 2560 = 2^9 * 5^1, 9, 111120, 2, 7
%e 30720 = 2^11 * 3^1 * 5^1, 11, 1032000, 3, 8
%e 32768 = 2^15, 15, 1120110, 2, 13
%e 4194304 = 2^22, 22, 83876020, 8, 14
%e 20971520 = 2^22 * 5^1, 22, 231462310, 6, 16
%e 58720256 = 2^23 * 7^1, 23, 610501410, 6, 17
%e 234881024 = 2^25 * 7^1, 25, 1141710210, 7, 18
%e 536870912 = 2^29, 29, 296AA71010, 10, 19
%e 1342177280 = 2^28 * 5^1, 28, 6071712310, 7, 21.
%e On the penultimate row, letter "A" in the primorial base expansion stands for ten (10 in decimal), as 2^29 = 0*prime(0)# + 1*prime(1)# + 0*prime(2)# + 1*prime(3)# + 7*prime(4)# + 10*prime(5)# + 10*prime(6)# + 6*prime(7)# + 9*prime(8)# + 2*prime(9)#, where prime(n)# = A002110(n).
%o (PARI)
%o A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
%o A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); };
%o A350074(n) = (A328114(n) - A051903(n));
%o m=A350074(1); print1(1,", "); for(n=2,oo,x=A350074(n); if(x<m,print1(n,", "); m=x));
%Y Positions of records for -A350074(n).
%Y Cf. A002110, A049345, A051903, A328114.
%Y Cf. also A369646, A369647.
%Y After the initial 1, subsequence of A351038, after the two initial terms, subsequence of A350075.
%K nonn,more
%O 1,2
%A _Antti Karttunen_, Feb 01 2024