login
A369607
Greedy solution a(1) < a(2) < ... to 1/a(1) + 1/a(2) + ... = (1 - 1/a(1)) * (1 - 1/a(2)) * ....
2
3, 6, 29, 803, 643727, 414383582243, 171713753231982206218247, 29485613049014079571725771288849499850026859243, 869401376876189366008603664962520703088459987798626788985159595026678611496977754082506135887
OFFSET
1,1
COMMENTS
For any n, (x1, x2, ..., xn) = (a(1), a(2), ..., a(n-1), a(n)-1) forms a solution to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn), proving that A369470(n) >= A369469(n) >= 1.
FORMULA
a(n+2) = a(n+1)^2 + (a(n) - 2)*a(n+1) - a(n)^3 + 2*a(n)^2 - 2*a(n) + 2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jan 27 2024
STATUS
approved