OFFSET
1,1
COMMENTS
Greedy representation 1 = 1/a(1)^2 + 1/a(2)^2 + ... constructed similarly to Sylvester's sequence (A000058). Each a(n) is taken as small as possible keeping the remainder positive.
PROG
(PARI) s=1; for(n=1, 20, t=sqrtint(floor(1/s))+1; s-=1/t^2; print1(t, ", "));
(Python)
from math import isqrt
from fractions import Fraction
def A348626List():
s = Fraction(1, 1)
while True:
t = isqrt(1 // s) + 1
yield t
s -= Fraction(1, t * t)
a = A348626List()
print([next(a) for _ in range(18)]) # Peter Luschny, Oct 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Oct 25 2021
STATUS
approved