OFFSET
1,1
COMMENTS
Take turns flipping a fair coin. The first to n heads wins. Sequence gives numerator of probability of first player winning. The denominator is .3^(2n-1).
It appears that a(n) for any n is divisible by 2^(A001511(n)).
LINKS
Tadayoshi Kamegai, Table of n, a(n) for n = 1..100
Bartosz Sobolewski and Lukas Spiegelhofer, Decomposing the sum-of-digits correlation measure, arXiv:2411.07779 [math.NT], 2024. See p. 16.
FORMULA
Limit_{n->oo} a(n)/3^(2n-1) = 1/2.
a(n) = Sum_{i>=n} Sum_{j=0..n-1} binomial(i-1,n-1)*binomial(i-1,j)*3^(2n-1)/2^(2i-1).
9*a(n) - a(n+1) = 2*A162326(n) (conjectured).
a(n) = 3^(2n-1)*A(n, n) where A(0, k) = 0 for k > 0, A(k, 0) = 1 for k >= 0 and A(n, m) = (A(n-1, m) + A(n, m-1) + A(n-1, m-1))/3.
PROG
(Python)
def lis(n):
table = [[0]*(n+1) for _ in range(n+1)]
table[1][1] = 2
for i in range(1, n+1) :
table[i][0] = 3**(i-1)
for i in range(1, n+1) :
for j in range(1, n+1) :
if (i == 1 and j == 1) :
continue
table[i][j] = table[i][j-1] + table[i-1][j] + 3*table[i-1][j-1]
return [int(table[i][i]) for i in range(1, n+1)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tadayoshi Kamegai, Jan 26 2024
STATUS
approved