OFFSET
3,1
COMMENTS
An optimum degree sequence begins with 2, 3, ..., n/2, and continues with n/2, when n is even, although the final term must be increased to n/2+1 if the sum is odd. It begins with 2, 3, ..., (n-1)/2, (n-1)/2, and continues with (n+1)/2, when n is odd, although the final term must be increased to (n+3)/2 if the sum is odd.
REFERENCES
Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming, Volume 4 (preprint, 2024).
LINKS
Paolo Xausa, Table of n, a(n) for n = 3..10000
Vacláv Chvátal, On Hamilton's ideals, J. Combin. Theory Ser. B 12(2): 163-168 (1972).
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-2,2,2,-2,-1,1).
FORMULA
a(n) = floor((3*n^2+6*n)/16) if n is even, a(n) = floor((3*n^2+8*n-3)/16) if n is odd.
From Peter Luschny, Jan 26 2024: (Start)
a(n) = floor([x^n] ((x - 2)*x^2*(x + 1) - x) / (2*(x + 1)^2 * (x - 1)^3)).
G.f.: (x^2*(x^6 - x^5 - 2*x^4 + x^3 + x^2 - 2*x - 1))/((x - 1)^3 * (x + 1)^2 * (x^4 + 1)). (End)
EXAMPLE
For n=11 a graphical degree sequence meeting Chvátal's condition and having smallest sum is 2,3,4,5,5,6,6,6,6,6,7; so the minimum number of edges, a(11), is (2+3+4+5+5+6+6+6+6+6+7)/2=28.
MAPLE
a:= n-> floor((3*n*(n+2)+(n mod 2)*(2*n-3))/16):
seq(a(n), n=3..62); # Alois P. Heinz, Jan 26 2024
MATHEMATICA
A369568[n_] := Floor[(3*n*(n + 2) + Mod[n, 2] * (2*n - 3))/16];
Array[A369568, 100, 3] (* Paolo Xausa, Apr 18 2024 *)
PROG
(Python)
def a(n): return (n*(n + 1) - n//2*(n//2 - 1))//4
print([a(n) for n in range(3, 63)]) # Peter Luschny, Jan 26 2024
(Julia)
println([(n * (n + 1) - div(n, 2) * (div(n, 2) - 1)) ÷ 4 for n in 3:1000]) # Paul Muljadi, Jan 29 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Don Knuth, Jan 26 2024
STATUS
approved