login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A369189
Sum of the squarefree triangular divisors of n.
1
1, 1, 4, 1, 1, 10, 1, 1, 4, 11, 1, 10, 1, 1, 19, 1, 1, 10, 1, 11, 25, 1, 1, 10, 1, 1, 4, 1, 1, 35, 1, 1, 4, 1, 1, 10, 1, 1, 4, 11, 1, 31, 1, 1, 19, 1, 1, 10, 1, 11, 4, 1, 1, 10, 56, 1, 4, 1, 1, 35, 1, 1, 25, 1, 1, 76, 1, 1, 4, 11, 1, 10, 1, 1, 19, 1, 1, 88, 1, 11, 4
OFFSET
1,3
COMMENTS
Inverse Möbius transform of n * mu(n)^2 * c(n), where c(n) is the characteristic function of triangular numbers (A010054). - Wesley Ivan Hurt, Jun 21 2024
LINKS
FORMULA
a(n) = Sum_{d|n} d * mu(d)^2 * c(d), where c = A010054.
MATHEMATICA
Table[Sum[d*MoebiusMu[d]^2 (Floor[Sqrt[2 d + 1] + 1/2] - Floor[Sqrt[2 d] + 1/2]), {d, Divisors[n]}], {n, 100}]
PROG
(PARI) a(n) = sumdiv(n, d, if (issquarefree(d) && ispolygonal(d, 3), d)); \\ Michel Marcus, Jan 16 2024
CROSSREFS
Cf. A008683 (mu), A008966, A010054, A061304 (squarefree triangular numbers), A369188.
Sequence in context: A056647 A056057 A226234 * A185027 A016520 A361731
KEYWORD
nonn,easy,changed
AUTHOR
Wesley Ivan Hurt, Jan 15 2024
STATUS
approved