OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+k,k) * binomial(6*n+4,n-5*k).
D-finite with recurrence 2*n*(n-1)*(n-2)*(24115*n-65551)*(n+1)*a(n) -5*n*(n-1) *(n-2)*(392783*n^2 -1296338*n +636787)*a(n-1) +100*(n-1)*(n-2) *(86231*n^3 -471376*n^2 +844569*n -522390)*a(n-2) +50*(n-2)*(2114435*n^4 -14778692*n^3 +35712085*n^2 -33505588*n +8727216)*a(n-3) +50*(13474985*n^5 -137009240*n^4 +513119690*n^3 -832716700*n^2 +478740305*n +26151216)*a(n-4) -125*(5*n-21) *(6943*n-12944) *(5*n-19)*(5*n-18)*(5*n-17)*a(n-5)=0. - R. J. Mathar, Jan 25 2024
MAPLE
A369125 := proc(n)
add((-1)^k * binomial(n+k, k) * binomial(6*n+4, n-5*k), k=0..floor(n/5)) ;
%/(n+1) ;
end proc;
seq(A369125(n), n=0..70) ; # R. J. Mathar, Jan 25 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^5+x^5))/x)
(PARI) a(n) = sum(k=0, n\5, (-1)^k*binomial(n+k, k)*binomial(6*n+4, n-5*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 13 2024
STATUS
approved