login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369125
Expansion of (1/x) * Series_Reversion( x * ((1-x)^5+x^5) ).
4
1, 5, 40, 385, 4095, 46375, 548300, 6689550, 83593250, 1064463125, 13762667750, 180189122750, 2384130651875, 31829162793750, 428227113655000, 5800188020157500, 79026653220693750, 1082367047392625000, 14893567523068062500, 205796463286063912500
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+k,k) * binomial(6*n+4,n-5*k).
D-finite with recurrence 2*n*(n-1)*(n-2)*(24115*n-65551)*(n+1)*a(n) -5*n*(n-1) *(n-2)*(392783*n^2 -1296338*n +636787)*a(n-1) +100*(n-1)*(n-2) *(86231*n^3 -471376*n^2 +844569*n -522390)*a(n-2) +50*(n-2)*(2114435*n^4 -14778692*n^3 +35712085*n^2 -33505588*n +8727216)*a(n-3) +50*(13474985*n^5 -137009240*n^4 +513119690*n^3 -832716700*n^2 +478740305*n +26151216)*a(n-4) -125*(5*n-21) *(6943*n-12944) *(5*n-19)*(5*n-18)*(5*n-17)*a(n-5)=0. - R. J. Mathar, Jan 25 2024
MAPLE
A369125 := proc(n)
add((-1)^k * binomial(n+k, k) * binomial(6*n+4, n-5*k), k=0..floor(n/5)) ;
%/(n+1) ;
end proc;
seq(A369125(n), n=0..70) ; # R. J. Mathar, Jan 25 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^5+x^5))/x)
(PARI) a(n) = sum(k=0, n\5, (-1)^k*binomial(n+k, k)*binomial(6*n+4, n-5*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 13 2024
STATUS
approved