login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369116
Expansion of (1 - x)^2 * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)).
2
1, -1, 1, 0, 1, 1, 3, 4, 9, 15, 29, 53, 100, 186, 352, 663, 1257, 2387, 4547, 8678, 16602, 31818, 61092, 117486, 226277, 436403, 842731, 1629297, 3153466, 6109704, 11848634, 22998892, 44680016, 86869392, 169024094, 329110519, 641254825, 1250261783, 2439155631
OFFSET
0,7
COMMENTS
Considering more generally the family of generating functions (1 - x)^n * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)) one finds several sequences related to compositions as indicated in the cross-references.
FORMULA
a(n) = A368279(n) - A368279(n-1) where A368279(-1) = 0.
MAPLE
gf := (1 - x)^2 * add(x^j / (1 - add(x^k, k = 1..j)), j = 0..42):
ser := series(gf, x, 40): seq(coeff(ser, x, k), k = 0..38);
CROSSREFS
Cf. A369115 (n=-2), A186537 left shifted (n=-1), A079500 (n=0), A368279 (n=1), this sequence (n=2).
Sequence in context: A216075 A253197 A255064 * A165921 A030136 A320797
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 21 2024
STATUS
approved