login
A369095
Decimal expansion of the asymptotic probability that 3 random integer 3 X 3 matrices generate the ring M_3(Z).
1
7, 9, 5, 4, 9, 3, 6, 6, 0, 0, 4, 6, 4, 8, 6, 3, 1, 3, 2, 0, 8, 9, 4, 0, 2, 1, 3, 1, 8, 7, 5, 8, 0, 0, 1, 9, 6, 5, 9, 1, 9, 2, 5, 3, 7, 7, 5, 6, 9, 3, 7, 9, 0, 4, 1, 1, 5, 3, 0, 9, 1, 0, 6, 9, 5, 4, 8, 0, 6, 6, 8, 5, 6, 3, 5, 8, 9, 6, 0, 1, 1, 3, 2, 7, 8, 6, 1, 3, 5, 7, 4, 2, 8, 0, 0, 4, 5, 8, 4, 2, 0, 7, 4, 7, 5
OFFSET
0,1
LINKS
Steven Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022. See p. 40.
Rostyslav V. Kravchenko, Marcin Mazur, and Bogdan V. Petrenko, On the smallest number of generators and the probability of generating an algebra, Algebra & Number Theory, Vol. 6, No. 2 (2012), pp. 243-291; arXiv preprint, arXiv:1001.2873 [math.RA], 2010.
FORMULA
Equals (1/(zeta(2)*zeta(3)*zeta(4))) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 1/p^5).
EXAMPLE
0.79549366004648631320894021318758001965919253775693...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, -1, -1, 0, 1}, {0, 2, 3, -2, -10}, m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]]/(Zeta[2]*Zeta[3]*Zeta[4]), 10, 120][[1]]
PROG
(PARI) prodeulerrat(1 + 1/p^2 + 1/p^3 - 1/p^5)/(zeta(2)*zeta(3)*zeta(4))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jan 13 2024
STATUS
approved