login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363687
Decimal expansion of Sum_{k>=1} cos(Pi* log k)/k^2.
1
7, 9, 5, 6, 4, 0, 2, 0, 6, 7, 3, 5, 6, 7, 7, 5, 1, 7, 4, 3, 0, 6, 2, 8, 3, 2, 8, 4, 9, 8, 7, 6, 0, 8, 1, 2, 0, 9, 9, 0, 9, 6, 2, 6, 9, 7, 4, 8, 8, 7, 5, 4, 8, 3, 8, 2, 6, 1, 7, 1, 5, 7, 6, 1, 0, 8, 7, 4, 2, 8, 5, 9, 4, 1, 6, 8, 1, 8, 1, 8, 1, 0, 1, 4, 2, 9, 8, 3, 1, 3, 5, 2, 4, 2, 4, 1, 6, 1, 8, 6, 4, 1, 3, 8, 3
OFFSET
0,1
COMMENTS
Sum_{k>=1} sin(Pi*log k)/k^2 = 0.0942944615085... is the associated imaginary part.
FORMULA
Equals Re(zeta(2 + Pi*i)), where i=sqrt(-1).
EXAMPLE
0.795640206735677517430628328498...
MAPLE
Re(Zeta(2+I*Pi)) ;
evalf(%) ;
MATHEMATICA
RealDigits[Re[Zeta[2 + Pi*I]], 10, 105][[1]] (* Amiram Eldar, Jun 16 2023 *)
PROG
(PARI) real(zeta(2+I*Pi)) \\ Michel Marcus, Jun 15 2023
CROSSREFS
Sequence in context: A070693 A369095 A198417 * A215736 A132715 A154910
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Jun 15 2023
STATUS
approved