Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jan 11 2024 20:04:50
%S 1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0,
%T 0,1,0,0,1,0,0,0,0,0,1,0,0,1,1,0,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,
%U 0,0,1,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,1
%N a(n) = A336546(A005940(1+n)).
%H Antti Karttunen, <a href="/A368992/b368992.txt">Table of n, a(n) for n = 0..65537</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = A336546(A005940(1+n)).
%o (PARI)
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
%o A336546(n) = { my(f=factor(n)); (sigma(n)==lcm(vector(#f~,k,sigma(f[k,1]^f[k,2])))); };
%o A368992(n) = A336546(A005940(1+n));
%Y Cf. A005940, A324054, A336546, A368993 (partial sums).
%K nonn
%O 0
%A _Antti Karttunen_, Jan 11 2024