login
A368584
Table read by rows: T(n, k) = A124320(n + 1, k) * A048993(n, k).
1
1, 0, 2, 0, 3, 12, 0, 4, 60, 120, 0, 5, 210, 1260, 1680, 0, 6, 630, 8400, 30240, 30240, 0, 7, 1736, 45360, 327600, 831600, 665280, 0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280, 0, 9, 11430, 956340, 20207880, 162162000, 575134560, 908107200, 518918400
OFFSET
0,3
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 2]
[2] [0, 3, 12]
[3] [0, 4, 60, 120]
[4] [0, 5, 210, 1260, 1680]
[5] [0, 6, 630, 8400, 30240, 30240]
[6] [0, 7, 1736, 45360, 327600, 831600, 665280]
[7] [0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280]
PROG
(SageMath)
def Trow(n): return [rising_factorial(n+1, k)*stirling_number2(n, k)
for k in range(n+1)]
for n in range(7): print(Trow(n))
CROSSREFS
Cf. A124320 (rising factorial), A048993(Stirling2), A053492 (row sums), A213236 (alternating row sums), A001813 (main diagonal), A368583.
Sequence in context: A121065 A077928 A105418 * A368583 A365547 A280180
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 10 2024
STATUS
approved