login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368584
Table read by rows: T(n, k) = A124320(n + 1, k) * A048993(n, k).
1
1, 0, 2, 0, 3, 12, 0, 4, 60, 120, 0, 5, 210, 1260, 1680, 0, 6, 630, 8400, 30240, 30240, 0, 7, 1736, 45360, 327600, 831600, 665280, 0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280, 0, 9, 11430, 956340, 20207880, 162162000, 575134560, 908107200, 518918400
OFFSET
0,3
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 2]
[2] [0, 3, 12]
[3] [0, 4, 60, 120]
[4] [0, 5, 210, 1260, 1680]
[5] [0, 6, 630, 8400, 30240, 30240]
[6] [0, 7, 1736, 45360, 327600, 831600, 665280]
[7] [0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280]
PROG
(SageMath)
def Trow(n): return [rising_factorial(n+1, k)*stirling_number2(n, k)
for k in range(n+1)]
for n in range(7): print(Trow(n))
CROSSREFS
Cf. A124320 (rising factorial), A048993(Stirling2), A053492 (row sums), A213236 (alternating row sums), A001813 (main diagonal), A368583.
Sequence in context: A121065 A077928 A105418 * A368583 A365547 A280180
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 10 2024
STATUS
approved