login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) is the number of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).
2

%I #11 Dec 27 2023 01:21:36

%S 1,2,2,1,2,4,2,3,1,4,2,2,2,4,4,1,2,2,2,2,4,4,2,6,1,4,3,2,2,8,2,4,4,4,

%T 4,1,2,4,4,6,2,8,2,2,2,4,2,2,1,2,4,2,2,6,4,6,4,4,2,4,2,4,2,1,4,8,2,2,

%U 4,8,2,3,2,4,2,2,4,8,2,2,1,4,2,4,4,4,4

%N a(n) is the number of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).

%H Amiram Eldar, <a href="/A368470/b368470.txt">Table of n, a(n) for n = 1..10000</a>

%H Vaclav Kotesovec, <a href="/A368470/a368470.jpg">Graph - the asymptotic ratio (100000 terms)</a>

%F a(n) = A033634(A350389(n)).

%F Multiplicative with a(p^e) = (e+3)/2 if e is odd and 1 otherwise.

%F a(n) >= 1, with equality if and only if n is a square (A000290).

%F a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).

%F Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 2/p^s - 1/p^(2*s) - 1/p^(3*s)).

%F From _Vaclav Kotesovec_, Dec 26 2023: (Start)

%F Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).

%F Let f(s) = Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).

%F Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where

%F f(1) = Product_{p prime} (1 - (2*p+1) / (p*(p+1)^2)) = 0.528940778823659679133966695786017426052491935740673837882972347697...,

%F f'(1) = f(1) * Sum_{p prime} (4*p^2 + 3*p + 1) * log(p) / (p^4 + 3*p^3 + p^2 - 2*p - 1) = f(1) * 1.36109933267802415215189866467122940932493907539386280428818...

%F and gamma is the Euler-Mascheroni constant A001620. (End)

%t f[p_, e_] := If[OddQ[e], (e + 3)/2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,2]+3)/2, 1));}

%Y Cf. A000005, A000290, A005117, A033634, A268335, A350389, A368471.

%K nonn,easy,mult

%O 1,2

%A _Amiram Eldar_, Dec 26 2023