login
A368166
Expansion of e.g.f. -log(1 + x^3/6 * log(1 - x)).
3
0, 0, 0, 0, 4, 10, 40, 210, 1904, 15120, 132600, 1293600, 14673120, 178738560, 2341182480, 32915282400, 499117301760, 8075042976000, 138689356915200, 2519863488979200, 48354005826489600, 976893364144857600, 20721305503846886400, 460363370406207206400
OFFSET
0,5
COMMENTS
This sequence is different from A351493.
LINKS
FORMULA
a(n) = n! * Sum_{k=1..floor(n/4)} (k-1)! * |Stirling1(n-3*k,k)|/(6^k * (n-3*k)!).
a(0) = a(1) = a(2) = a(3) = 0; a(n) = n!/(6*(n-3)) + Sum_{k=4..n-1} k!/(6*(k-3)) * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Jan 22 2025
PROG
(PARI) a(n) = n!*sum(k=1, n\4, (k-1)!*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 14 2023
STATUS
approved