login
A368127
a(n) is the x-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368126.
3
0, 1, 0, -1, -1, -1, 0, 1, 1, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 0, 1, 2, 3, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 5, 4, 4, 3, 2, 1, 0, 0, -1, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, 0, 0, 1, 1, 2, 3, 4, 4, 5, 6, 6, 6, 5, 4, 3
OFFSET
0,10
PROG
(PARI) \\ ax(n), ay(n) after Kevin Ryde's functions in A174344 and A274923.
\\ It is assumed that the PARI programs from A367150 and A368126 have been loaded and the functions defined there are available.
ax(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, k, -k-n), if (n<m, -k, n-3*k))};
ay(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, 3*k+n, k), if (n<m, k-n, -k))};
a368127(n) = BijectionD([ax(n), ay(n)], Bijectionk)[1];
CROSSREFS
A368128 gives the corresponding y-coordinates.
Analogous sequences, but without symmetrization: A367895, A367896.
Sequence in context: A219489 A051168 A367895 * A368122 A281459 A163528
KEYWORD
sign
AUTHOR
Hugo Pfoertner, Jan 07 2024
STATUS
approved