login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367895
a(n) is the x-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the variant of the distance-limited strip bijection described in A367150.
5
0, 1, 0, -1, -1, -1, 0, 1, 1, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 0, 1, 2, 3, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 5, 4, 4, 3, 2, 1, 0, 0, -1, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, 0, 0, 1, 1, 2, 3, 4, 4, 5, 6, 6
OFFSET
0,10
LINKS
Hugo Pfoertner, Plot of mapped spiral, using Plot 2.
Hugo Pfoertner, Visualization of spiral, (orange) and bijection partners from the 2 grids.
Hugo Pfoertner, Comparison of the spirals. This sequence: black, A362955: red.
PROG
(PARI) \\ ax(n), ay(n) after Kevin Ryde's functions in A174344 and A274923.
\\ It is assumed that the PARI program from A367150 has been loaded and the functions defined there are available.
ax(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, k, -k-n), if (n<m, -k, n-3*k))};
ay(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, 3*k+n, k), if (n<m, k-n, -k))};
a367895(n) = BijectionD([ax(n), ay(n)])[1]
CROSSREFS
A367896 gives the corresponding y-coordinates.
Sequence in context: A323258 A219489 A051168 * A368127 A368122 A281459
KEYWORD
sign
AUTHOR
STATUS
approved