login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The successive sums a(n) + a(n+1) reproduce the decimal expansion of the Champernowne constant.
0

%I #14 Dec 21 2023 21:23:54

%S 0,1,1,2,2,3,3,4,4,5,-4,4,-3,4,-3,5,-4,7,-6,10,-9,14,-13,19,-18,25,

%T -24,32,-31,40,-38,38,-36,37,-35,37,-35,38,-36,40,-38,43,-41,47,-45,

%U 52,-50,58,-56,65,-62,62,-59,60,-57,59,-56,59,-56,60,-57,62,-59,65,-62,69,-66,74,-71,80,-76

%N The successive sums a(n) + a(n+1) reproduce the decimal expansion of the Champernowne constant.

%H Eric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/12/champernowne-gamified.html">Champernowne gamified</a>, Personal blog, December 2023.

%e a(1) + a(2) = 0 + 1 = 1;

%e a(2) + a(3) = 1 + 1 = 2;

%e a(3) + a(4) = 1 + 2 = 3;

%e a(4) + a(5) = 2 + 2 = 4;

%e a(5) + a(6) = 2 + 3 = 5;

%e a(6) + a(7) = 3 + 3 = 6;

%e a(7) + a(8) = 3 + 4 = 7;

%e a(8) + a(9) = 4 + 4 = 8;

%e a(9) + a(10) = 4 + 5 = 9;

%e a(10) + a(11) = 5 + -4 = 1;

%e a(11) + a(12) = -4 + 4 = 0;

%e a(12) + a(13) = 4 + -3 = 1;

%e a(13) + a(14) = -3 + 4 = 1;

%e a(14) + a(15) = 4 + -3 = 1;

%e a(15) + a(16) = -3 + 5 = 2; etc.

%e The rightmost column reproduces the decimal expansion of the Champernowne constant.

%t s=First@RealDigits[ChampernowneNumber[],10,n=70];

%t a[1]=0;a[n_]:=a[n]=s[[n-1]]-a[n-1];Array[a,n] (* _Giorgos Kalogeropoulos_, Dec 11 2023 *)

%o (Python)

%o from itertools import count, islice

%o def chap():

%o for k in count(1): yield from list(map(int, str(k)))

%o def agen(): # generator of terms

%o an = 0

%o for c in chap():

%o yield an

%o an = c - an

%o print(list(islice(agen(), 80))) # _Michael S. Branicky_, Dec 11 2023

%Y Cf. A033307.

%K sign,base,look

%O 1,4

%A _Eric Angelini_ Dec 11 2023