login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368086
The successive sums a(n) + a(n+1) reproduce the decimal expansion of the Champernowne constant.
0
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, -4, 4, -3, 4, -3, 5, -4, 7, -6, 10, -9, 14, -13, 19, -18, 25, -24, 32, -31, 40, -38, 38, -36, 37, -35, 37, -35, 38, -36, 40, -38, 43, -41, 47, -45, 52, -50, 58, -56, 65, -62, 62, -59, 60, -57, 59, -56, 59, -56, 60, -57, 62, -59, 65, -62, 69, -66, 74, -71, 80, -76
OFFSET
1,4
LINKS
Eric Angelini, Champernowne gamified, Personal blog, December 2023.
EXAMPLE
a(1) + a(2) = 0 + 1 = 1;
a(2) + a(3) = 1 + 1 = 2;
a(3) + a(4) = 1 + 2 = 3;
a(4) + a(5) = 2 + 2 = 4;
a(5) + a(6) = 2 + 3 = 5;
a(6) + a(7) = 3 + 3 = 6;
a(7) + a(8) = 3 + 4 = 7;
a(8) + a(9) = 4 + 4 = 8;
a(9) + a(10) = 4 + 5 = 9;
a(10) + a(11) = 5 + -4 = 1;
a(11) + a(12) = -4 + 4 = 0;
a(12) + a(13) = 4 + -3 = 1;
a(13) + a(14) = -3 + 4 = 1;
a(14) + a(15) = 4 + -3 = 1;
a(15) + a(16) = -3 + 5 = 2; etc.
The rightmost column reproduces the decimal expansion of the Champernowne constant.
MATHEMATICA
s=First@RealDigits[ChampernowneNumber[], 10, n=70];
a[1]=0; a[n_]:=a[n]=s[[n-1]]-a[n-1]; Array[a, n] (* Giorgos Kalogeropoulos, Dec 11 2023 *)
PROG
(Python)
from itertools import count, islice
def chap():
for k in count(1): yield from list(map(int, str(k)))
def agen(): # generator of terms
an = 0
for c in chap():
yield an
an = c - an
print(list(islice(agen(), 80))) # Michael S. Branicky, Dec 11 2023
CROSSREFS
Cf. A033307.
Sequence in context: A187446 A240020 A336430 * A167232 A319468 A137791
KEYWORD
sign,base,look
AUTHOR
Eric Angelini Dec 11 2023
STATUS
approved