login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368015
Expansion of e.g.f. 1/(1 - exp(2*x) + exp(3*x)).
0
1, -1, -3, 5, 81, 29, -4623, -20035, 415041, 4838909, -46093743, -1309934275, 3230184801, 419574363389, 2065056788337, -154120122603715, -2307971235744639, 59954627542249469, 1959892188447337617, -19474957767402204355, -1658215397958862557279
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} (2^k - 3^k) * binomial(n,k) * a(n-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (2^j-3^j)*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
Cf. A355409.
Sequence in context: A122912 A062214 A323490 * A144617 A301492 A107655
KEYWORD
sign
AUTHOR
Seiichi Manyama, Dec 08 2023
STATUS
approved