login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367740
a(n) = A367727(A367593(n)).
1
-1, 0, 0, 0, 5, 0, 9, 5, 0, 5, 0, 5, 0, 5, 3, 0, 5, 0, 8, 5, 0, 8, 5, 0, 8, 5, 3, 0, 8, 5, 0, 8, 5, 3, 0, 8, 5, 0, 8, 5, 3, 0, 8, 5
OFFSET
1,5
COMMENTS
Restricted to integers k where k + 1 divides R(k) - 1 the terms are (R(k) - 1) / (k + 1), where R(k) denotes the digit reversal of k. - Peter Luschny, Dec 01 2023
The 0's correspond to the powers of 10 (cf. A011557), the 5's correspond to the numbers of the form 14*10^h + 7 = 7*A199682(h) for h > 0, and the 8's correspond to the numbers of the form 12345*10^m + 6789 = A367650(m) for m > 3. The only negative term -1 corresponds to A367593(1) = 0. - Stefano Spezia, Dec 01 2023
FORMULA
-1 <= a(n) <= 9.
PROG
(Python)
def A367740List(upto):
L = []
for n in range(upto):
rev = int(str(n)[::-1])
if (rev - 1) % (n + 1) == 0:
L.append((rev - 1) // (n + 1))
return L
print(A367740List(10**6)) # Peter Luschny, Dec 01 2023
(Python)
from itertools import product, count, islice
def A367740_gen(): # generator of terms
yield from (-1, 0, 0)
for l in count(1):
m = 10**(l+1)
for d in product('0123456789', repeat=l):
for a, b, c in ((1, 0, 0), (1, 1, 0), (1, 4, 2), (1, 5, 5), (1, 7, 5)):
k = a*m+int(s:=''.join(d))*10+b
r = b*m+int(s[::-1])*10+a
if c*(k+1)==r-1:
yield c
a, b = 1, 9
k = a*m+int(s:=''.join(d))*10+b
r = b*m+int(s[::-1])*10+a
p, q = divmod(r-1, k+1)
if not q:
yield p
a, b, c=2, 6, 3
for d in product('0123456789', repeat=l):
k = a*m+int(s:=''.join(d))*10+b
r = b*m+int(s[::-1])*10+a
if c*(k+1)==r-1:
yield c
A367740_list = list(islice(A367740_gen(), 20)) # Chai Wah Wu, Dec 01 2023
CROSSREFS
KEYWORD
sign,base,hard,more
AUTHOR
Stefano Spezia, Nov 29 2023
EXTENSIONS
a(30)-a(44) from Chai Wah Wu, Dec 02 2023
STATUS
approved