login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367462
Expansion of (1/x) * Series_Reversion( x / (1+x+x^3/(1+x)) ).
0
1, 1, 1, 2, 4, 7, 14, 30, 62, 131, 287, 629, 1385, 3096, 6967, 15735, 35782, 81823, 187781, 432689, 1000919, 2322584, 5405094, 12614260, 29512587, 69205602, 162634994, 382961435, 903431963, 2134945637, 5053385429, 11979405642, 28438444486, 67601886687
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(n-2*k+1,n-3*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^3/(1+x)))/x)
(PARI) a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(n-2*k+1, n-3*k))/(n+1);
CROSSREFS
Cf. A126042.
Sequence in context: A000671 A199888 A157133 * A202850 A365857 A247295
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 26 2024
STATUS
approved