login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366911
a(n) = (A364054(n+1) - A364054(n)) / prime(n) (where prime(n) denotes the n-th prime number).
2
1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -3, 2, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
OFFSET
1,29
COMMENTS
a(n) is the number of steps of size prime(n) in going from A364054(n) to A364054(n+1).
LINKS
Rémy Sigrist, PARI program
EXAMPLE
a(7) = (A364054(8) - A364054(7)) / prime(7) = (19 - 2) / 17 = 1.
MATHEMATICA
nn = 2^16; c[_] := False; m[_] := 0; j = 1; c[0] = c[1] = True;
Monitor[Do[p = Prime[n - 1]; r = Mod[j, p];
While[Set[k, p m[p] + r ]; c[k], m[p]++];
Set[{a[n - 1], c[k], j}, {(k - j)/p, True, k}], {n, 2, nn + 1}], n];
Array[a, nn] (* Michael De Vlieger, Oct 27 2023 *)
PROG
(PARI) See Links section.
(Python)
from itertools import count, islice
from sympy import nextprime
def A366911_gen(): # generator of terms
a, aset, p = 1, {0, 1}, 2
while True:
k, b = divmod(a, p)
for i in count(-k):
if b not in aset:
aset.add(b)
a, p = b, nextprime(p)
yield i
break
b += p
A366911_list = list(islice(A366911_gen(), 30)) # Chai Wah Wu, Oct 27 2023
CROSSREFS
Cf. A160357, A364054, A366912 (partial sums).
Sequence in context: A336929 A325524 A010269 * A077450 A328330 A214878
KEYWORD
sign
AUTHOR
Rémy Sigrist, Oct 27 2023
STATUS
approved