login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366818
Let p = A000043(n) be the n-th Mersenne exponent, then a(n) = ((2^p-1)^2-1)/p.
1
4, 16, 192, 2304, 5160960, 1010565120, 14467203072, 148764064972013568, 87162491526879729295140036437606400, 4304762755241260838085244444377946703587691074682880, 246056756234946697892331840382404519263272106760845744463151104, 227937183538024006739312962615527377661237903932985846822055286571232395264
OFFSET
1,1
COMMENTS
a(n) is the largest k such that 2 is a k-th power in the finite field F_{2^p-1}(i), where i^2 = -1.
LINKS
EXAMPLE
In F_9 = F_3(i), we have 2 = (1+i)^2.
Jn F_49 = F_7(i), we have 2 = (3+i)^16.
In F_961 = F_31(i), we have 2 = (5+4*i)^192.
PROG
(PARI) A366818(lim) = my(q); forprime(p=2, lim, if(isprime(q=2^p-1), print1((q^2-1)/p, ", ")))
CROSSREFS
Sequence in context: A012916 A012921 A280468 * A224802 A000513 A088027
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 24 2023
STATUS
approved