login
A366806
Lexicographically earliest infinite sequence such that a(i) = a(j) => A324186(i) = A324186(j) for all i, j >= 0, where A324186 is the sum of odd divisors permuted by A163511.
8
1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 14, 16, 31, 1, 32, 17, 33, 9, 34, 18, 35, 5, 36, 19, 37, 10, 38, 20, 39, 3, 40, 21, 41, 11, 42, 22, 43, 6
OFFSET
0,4
COMMENTS
Restricted growth sequence transform of A324186.
LINKS
FORMULA
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000593(n) = sigma(n>>valuation(n, 2)); \\ From A000593
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
v366806 = rgs_transform(vector(1+up_to, n, A324186(n-1)));
A366806(n) = v366806[1+n];
CROSSREFS
Cf. also A366804.
Sequence in context: A347374 A336934 A366874 * A366881 A366891 A003602
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 26 2023
STATUS
approved