login
Number of 2-distant 4-noncrossing partitions of {1,...,n}.
2

%I #20 Nov 18 2023 08:36:28

%S 1,1,2,5,15,52,203,877,4140,21146,115938,677765,4200011,27446229,

%T 188255890,1349652560,10075332564,78052115894,625568350179,

%U 5173033558415,44028767332852,384857341649657

%N Number of 2-distant 4-noncrossing partitions of {1,...,n}.

%C a(n+1) is the binomial transform of A108305.

%D Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp.

%H Juan B. Gil and Jordan O. Tirrell, <a href="https://arxiv.org/abs/1806.09065">A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions</a>, arXiv:1806.09065 [math.CO], 2018-2023.

%F a(n+1) = Sum_{i=0..n} binomial(n,i)*A108305(i).

%e There are 21147 partitions of 9 elements, but a(9)=21146 because the partition (1,6)(2,7)(3,8)(4,9)(5) has a 2-distant 4-crossing.

%Y Cf. A108305, A366774, A366776.

%K nonn,more

%O 0,3

%A _Juan B. Gil_, Nov 13 2023