login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366775
Number of 2-distant 4-noncrossing partitions of {1,...,n}.
2
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115938, 677765, 4200011, 27446229, 188255890, 1349652560, 10075332564, 78052115894, 625568350179, 5173033558415, 44028767332852, 384857341649657
OFFSET
0,3
COMMENTS
a(n+1) is the binomial transform of A108305.
REFERENCES
Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp.
LINKS
Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018-2023.
FORMULA
a(n+1) = Sum_{i=0..n} binomial(n,i)*A108305(i).
EXAMPLE
There are 21147 partitions of 9 elements, but a(9)=21146 because the partition (1,6)(2,7)(3,8)(4,9)(5) has a 2-distant 4-crossing.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Juan B. Gil, Nov 13 2023
STATUS
approved