Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 07 2023 21:39:48
%S 1,2,3,4,2,5,3,6,7,1,8,9,10,5,5,11,12,13,3,14,15,16,17,18,19,15,20,9,
%T 2,3,21,22,14,23,5,24,4,5,25,26,27,10,3,28,13,29,30,31,32,33,29,34,17,
%U 35,16,18,15,1,36,37,38,39,28,40,15,4,10,41,42,3,43,44,12,14,45,9,14,30,4,46,47,48,49,50,23,5,5
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A349623(i) = A349623(j) for all i, j >= 1, where A349623 is the Dirichlet inverse of A064989(sigma(A003961(n))).
%C Restricted growth sequence transform of A349623.
%H Antti Karttunen, <a href="/A366295/b366295.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A326042(n) = A064989(sigma(A003961(n)));
%o v366295 = rgs_transform(DirInverseCorrect(vector(up_to,n,A326042(n))));
%o A366295(n) = v366295[n];
%Y Cf. A000203, A003961, A064989, A326042, A349623.
%Y Cf. also A286603, A366294.
%K nonn
%O 1,2
%A _Antti Karttunen_, Oct 07 2023