login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: coefficients in expansion of Asveld's polynomials Pi_j(x).
1

%I #17 Oct 29 2023 20:31:35

%S 1,3,1,10,6,1,48,30,9,1,312,192,60,12,1,2520,1560,480,100,15,1,24480,

%T 15120,4680,960,150,18,1,277200,171360,52920,10920,1680,210,21,1,

%U 3588480,2217600,685440,141120,21840,2688,280,24,1,52254720,32296320,9979200,2056320,317520,39312,4032,360,27,1

%N Triangle read by rows: coefficients in expansion of Asveld's polynomials Pi_j(x).

%H Winston de Greef, <a href="/A365962/b365962.txt">Table of n, a(n) for n = 0..11324</a>

%H P. R. J. Asveld, <a href="http://www.fq.math.ca/Scanned/25-4/asveld.pdf">Another family of Fibonacci-like sequences</a>, Fib. Quart., 25 (1987), 361-364.

%F E.g.f. of column k: (1+x)^2*x^k / ((1-x-x^2)*k!), k >= 0.

%F T(n,n) = 1 and T(n,k) = n!/k!*Fibonacci(n-k+3), n > k >= 0.

%F T(n,k) = n!/k!*Sum_{j=k..n} Fibonacci(j-k+1)*binomial(2,n-j).

%F T(n,k) = n!/k!*Sum_{j=k..n} (Fibonacci(j-k)+(-1)^(j-k))*binomial(3,n-j).

%F Recurrence: T(n,0) = A005921(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1.

%F T(n,k) = Sum_{j=k..n} Stirling2(j,k)*(Sum_{i=j..n} Stirling1(n,i)*A341725(i,j)).

%F Sum_{j=k..n} (-1)^(n-j)*(n-j+1)!*binomial(n,j)*T(j,k) = A039948(n,k).

%e Triangle begins:

%e 1,

%e 3, 1,

%e 10, 6, 1,

%e 48, 30, 9, 1,

%e 312, 192, 60, 12, 1,

%e 2520, 1560, 480, 100, 15, 1,

%e 24480, 15120, 4680, 960, 150, 18, 1,

%e ...

%p T := proc(n, k) option remember;if k = n then 1 else (n!/k!*combinat[fibonacci](n-k+3)) fi end: seq(print(seq(T(n, k), k = 0..n)), n=0..9);

%p # second Maple program:

%p T := (n,k) -> add(Stirling2(j, k)*add(Stirling1(n, i)*A341725(i, j), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9);

%o (PARI) T(n,k) = n!/k!*sum(j=k, n, fibonacci(j-k+1)*binomial(2,n-j)) \\ _Winston de Greef_, Oct 21 2023

%o (PARI) T(n,k) = if(n == k, 1, n!/k!*fibonacci(n-k+3)) \\ _Winston de Greef_, Oct 21 2023

%Y Cf. A000045, A005921 (col 0), A005922 (col 1), A039948, A341725.

%K nonn,tabl

%O 0,2

%A _Mélika Tebni_, Sep 23 2023