login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365962
Triangle read by rows: coefficients in expansion of Asveld's polynomials Pi_j(x).
1
1, 3, 1, 10, 6, 1, 48, 30, 9, 1, 312, 192, 60, 12, 1, 2520, 1560, 480, 100, 15, 1, 24480, 15120, 4680, 960, 150, 18, 1, 277200, 171360, 52920, 10920, 1680, 210, 21, 1, 3588480, 2217600, 685440, 141120, 21840, 2688, 280, 24, 1, 52254720, 32296320, 9979200, 2056320, 317520, 39312, 4032, 360, 27, 1
OFFSET
0,2
LINKS
P. R. J. Asveld, Another family of Fibonacci-like sequences, Fib. Quart., 25 (1987), 361-364.
FORMULA
E.g.f. of column k: (1+x)^2*x^k / ((1-x-x^2)*k!), k >= 0.
T(n,n) = 1 and T(n,k) = n!/k!*Fibonacci(n-k+3), n > k >= 0.
T(n,k) = n!/k!*Sum_{j=k..n} Fibonacci(j-k+1)*binomial(2,n-j).
T(n,k) = n!/k!*Sum_{j=k..n} (Fibonacci(j-k)+(-1)^(j-k))*binomial(3,n-j).
Recurrence: T(n,0) = A005921(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1.
T(n,k) = Sum_{j=k..n} Stirling2(j,k)*(Sum_{i=j..n} Stirling1(n,i)*A341725(i,j)).
Sum_{j=k..n} (-1)^(n-j)*(n-j+1)!*binomial(n,j)*T(j,k) = A039948(n,k).
EXAMPLE
Triangle begins:
1,
3, 1,
10, 6, 1,
48, 30, 9, 1,
312, 192, 60, 12, 1,
2520, 1560, 480, 100, 15, 1,
24480, 15120, 4680, 960, 150, 18, 1,
...
MAPLE
T := proc(n, k) option remember; if k = n then 1 else (n!/k!*combinat[fibonacci](n-k+3)) fi end: seq(print(seq(T(n, k), k = 0..n)), n=0..9);
# second Maple program:
T := (n, k) -> add(Stirling2(j, k)*add(Stirling1(n, i)*A341725(i, j), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9);
PROG
(PARI) T(n, k) = n!/k!*sum(j=k, n, fibonacci(j-k+1)*binomial(2, n-j)) \\ Winston de Greef, Oct 21 2023
(PARI) T(n, k) = if(n == k, 1, n!/k!*fibonacci(n-k+3)) \\ Winston de Greef, Oct 21 2023
CROSSREFS
Cf. A000045, A005921 (col 0), A005922 (col 1), A039948, A341725.
Sequence in context: A091965 A171568 A107056 * A337273 A376787 A116384
KEYWORD
nonn,tabl
AUTHOR
Mélika Tebni, Sep 23 2023
STATUS
approved