login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365686
Numbers k such that there exists a pair of integers (m,h) where 1 <= m < floor(sqrt(k)/2) <= h that satisfy Sum_{j=0..m} (k-j)^2 = Sum_{i=1..m} (h+i)^2.
0
4, 12, 21, 24, 40, 60, 84, 110, 112, 120, 144, 180, 220, 264, 312, 315, 364, 420, 480, 544, 612, 684, 697, 760, 820, 840, 924, 1012, 1080, 1104, 1200, 1265, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2106, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3255
OFFSET
1,1
COMMENTS
The sums are of m+1 consecutive squares ending at k^2, and of m consecutive squares starting somewhere at or beyond (k+1)^2.
If k is a term and h = k then k is in A046092.
All terms are composite numbers.
Also k is a term if there exists a pair of integers (m, h) such that 1 <= m < floor(sqrt(k)/2) <= h and that satisfy k*(m+1)*(k-m)-m*h*(h+m+1)=0.
FORMULA
k if Sum_{j=0..m} (k-j)^2 = Sum_{i=1..m} (h+i)^2 where 1 <= m < floor(sqrt(k)/2) <= h.
EXAMPLE
k=24 is a term because 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2 with m=3 and h=24.
k=110 is a term because 108^2 + 109^2 + 110^2 = 133^2 + 134^2, with m=2 and h=132.
PROG
(Python)
from gmpy2 import *
A002378 = lambda n: n * (n + 1)
A046092 = lambda n: A002378(n) << 1
isA046092 = lambda n: (n & 1 == 0) and is_square((n << 1) + 1)
def isok(k):
if is_prime(k): return False
if isA046092(k): return True
k2 = k * k
for m in range(1, (isqrt(k) >> 1) + 1):
h, m2, m_2 = k, m * m, m << 1
S = k2 - A046092(m) * k
while(S > 0):
h += 1
S -= m2 + (h * m_2)
if S == 0: return True
return False
print([k for k in range(1, 3256) if isok(k)])
(PARI) isok(k) = for (i=1, k-1, my(s1 = sum(j=k-i, k, j^2)); for (m=k+1, oo, my(s2 = sum(j=0, i-1, (m+j)^2)); if (s2 == s1, return(1)); if (s2 > s1, break); ); ); \\ Michel Marcus, Sep 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Darío Clavijo, Sep 15 2023
STATUS
approved