login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365684
a(n) is the smallest multiple of n that is an exponentially squarefree number (A209061).
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 96, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^A067535(e).
a(n) = n*A365685(n).
a(n) >= n, with equality if and only if n is an exponentially squarefree number (A209061).
Sum_{k=1..n} a(k) ~ c*n^2, where c = 0.532814206... = (1/2) * Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^(f(k-1)+1))/p^(2*k)), f(k) = A067535(k) and f(0) = 0.
MATHEMATICA
f[p_, e_] := Module[{k = e}, While[! SquareFreeQ[k], k++]; p^k]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(e) = {my(k = e); while(!issquarefree(k), k++); k; };
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 15 2023
STATUS
approved